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1 Introduction

Crop Wild Relatives (CWR) are the phylogenetically close relatives of common
crop species, and represent sources of genetic material for adaptive traits often
lost in cultivated species, acting as a safeguard against catastrophic loss [1]. The
form and function of crop wild relatives can be measured by functional traits,
or quantifiable features of a particular species. In particular, 6 functional traits
capture plant form and function, based on conclusions from [2]:

• ln – nitrogen content per unit mass (mg/g)

• sla – specific leaf area (mm2/mg)

• la – leaf area (mm2)

• sm – seed mass (mg)

• ph – plant height (m)

• ssd – specific stem density (g/m3)

2 PCA for Plant Trait Data

The researcher used an existing dataset, Cleaned_Trait_Data.csv 1, which
contains imputed functional trait measurements for 2790 CWR species. Anal-
ysis was done in the R language, using R Studio 2. Thus, the trait dataset is
considered as a matrix T ∈ R6 x 2790. At this point, the researcher de-meaned
each row in T to center the data (average of each trait across species), then
scaled T using,

1√
n− 1

T =
1√
2789

T

1This dataset was from the researchers BSURP Project last summer, where the majority
of the non-imputed data came from plant height (ph).

2Full code can be found in Section 7 at the bottom of the document
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Then, the researcher used the prcomp() function in the built-in stats R library.
The prcomp() function uses SVD composition, (similar methods to those dis-
cussed in lecture 16), to calculate the PCA. The researcher specified the follow-
ing arguments to the function,

pca_result <- prcomp(data_matrix, center = FALSE, scale. = TRUE)

specifically, the center was set to false because we already computed the data,
and scale was set to true to account for differences in measurement types/units
across traits. This is the SVD for the plant trait data:


0.3834 0.4606 0.2849 0.5939 −0.3625 −0.2744
−0.3646 0.5217 −0.4424 0.0480 0.3854 −0.4984
0.4484 0.2528 0.3661 −0.1255 0.7447 0.1755
−0.3039 0.5980 0.3366 −0.5178 −0.3303 0.2442
0.4897 −0.0914 −0.0732 −0.5994 −0.1891 −0.5928
0.4323 0.2930 −0.6859 −0.0412 −0.1437 0.4842


︸ ︷︷ ︸

U (6 × 6)


1.8111 0 0 0 0 0 · · ·

0 1.1861 0 0 0 0 · · ·
0 0 0.6835 0 0 0 · · ·
0 0 0 0.5993 0 0 · · ·
0 0 0 0 0.5654 0 · · ·
0 0 0 0 0 0.4086 · · ·


︸ ︷︷ ︸

Σ (6 × 2790, only top rows shown)



· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
...

...
...

...
...

...
. . .


︸ ︷︷ ︸

VT (2790 × 2790, too large to display)

3 Explained Variance in 2D and 3D PCA-Space

The researcher intended to visualize functional space using a PCA Scatter Plot,
but debated whether or not to do this in 2D or 3D PCA space. Once both were
plotted, the researcher created a Scree plot (Figure 1) to find the ”eblow” to
see if this aligned with key thresholds for PCA. Recall, the variance captured
by each PC can be denoted as:

Variance Captured by PCi =
σ2
i∑6

j=1 σ
2
j

Traditionally, capturing anywhere from 70% to 90% of the explained variance
are well-established cutoffs [3].

It turns out that the first two PC capture roughly 78.1% of the variance,
while the first three PC capture roughly 85.9% of the variance. While the elbow
clearly appears with PC 2, the further PC contributions are not negligible, (i.e.
they do not plateau significantly), so the researcher plotted in both 2D (Figure
2) and 3D (Figure 3) PCA Space.

4 Relative Ranking and Spearmans Rho

The researcher is looking for the most functionally unique species in 2D and 3D
PCA space. To compute this, the researcher used the Euclidian norm for vectors
to compute the average distance from all pairwise species, using distance as a
proxy for functional uniqueness. This is denoted as the functional uniqueness
for each species (d̄i),

f̄i =
1

2789

2790∑
j=1
j ̸=i

√√√√ d∑
k=1

(sik − sjk)2
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Figure 1: Scree Plot for Plant Trait Data

where d = 2 for 2D and d = 3 for 3D. From this, a relative functional uniqueness
ranking was created for each of the 2790 species. In order to compare the relative
rankings of the computations in 2D and 3D PCA space, the researcher used
Spearmans Rho (ρ) to measure,

ρ = 1− 6
∑

d2i
2790((2790)2 − 1)

where di represents the difference in species i ranking between each space, (i.e.
if species i is ranked 3rd in 2D PCA space, and 7th in 3D PCA space, then
di = 4). For these two datasets, Spearmans Rho (ρ) was 0.954, meaning that
these 2 measures of trait space are well aligned.

5 Functionally Unique Species

Adjacent literature looking examined global protected areas in relation to the
in-situ conservation of crop wild relatives, namely, creating a ”top 10” list of
clusters where CWR live inside and outside of protected areas [4]. The re-
searcher took inspiration from this approach on a species-level, presenting the
top 10 most ”functionally unique” species, seen in Table 1.
From this analysis, it is clear that functional uniqueness occurs across a variety
of conservation statuses. It is also true that 4 out of the 10 are Data Deficient
(DD), which signifies that there is simply no data available. This means that
we are completely unsure of their conservation status by IUCN criteria, but in
reality, could be Extinct in the Wild or Least Concern. Identifying DD species
represents an active area of research [5], and could serve as a next step for this
work. That being said, a high functional uniqueness, as demonstrated here,
provides conservation justification for the DD species listed above. Namely, the
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Figure 2: 2D PCA Scatterplot

isolation of Prunus cerasifera is notable, being by far the most ”functionally
unique” species. For reference, the isolated dark red point in the top left of the
3D PCA Scatterplot is Prunus cerasifera. Furthermore, 3 out of the 10 species
the researcher considered are Vulnerable or Endangered, including Manilkara
huberi3, the only Endangered species in the top 10. These three species not
only are at-risk by traditional conservation measures, but if they were to go
extinct, a unique niche in functional space would be lost, one which would be
less likely to be filled by an adjacent species. This emphasizes the notion that
functional space should be viewed as a conservation measure–as it represents a
different way to quantify biodiversity.

3Here is an interesting excerpt from Wikipedia about the use of Manilkara huberi latex in
golf balls, one of the many uses of CWR: ”The latex from M. huberi was used to make golf
ball covers, along with that the better known and more widespread M. bidentata (”Balata” or
”Massaranduba.”) Latex products from a number of Manilkara species being interchangeably
called ”balata”, ”Gutta Balata”, or more generally ”Chicle.” It was considered a good quality,
but short-lived, cover, requiring frequent recoating or replacement. Balls with Balata coatings
had a high spin rate. Yet it was popular in tournaments among professionals and low handicap
players. Modern materials such as Polyurethane Elastomer and Methacrylic Acid copolymers
have made Balata golf balls largely obsolete by the late 20th century, as they have much better
abrasion resistance and generally lower air drag.”
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Figure 3: 3D PCA Scatterplot

Species Avg. Distance Rank IUCN Status

Prunus cerasifera 6.689872 1 Data Deficient
Pinus heldreichii 5.465169 2 Least Concern
Manilkara huberi 5.380211 3 Endangered
Cyperus articulatus 5.359989 4 Least Concern
Ambrosia deltoidea 5.292286 5 Data Deficient
Vaccinium myrsinites 5.249545 6 Data Deficient
Madhuca hainanensis 5.201356 7 Vulnerable
Manilkara bidentata 5.160287 8 Vulnerable
Pinus densiflora 5.090327 9 Least Concern
Atriplex lampa 5.076923 10 Data Deficient

Table 1: Top 10 Species Ranked by Average Distance

6 Use of LLMs

I used LLMs to assist in generating some of the code due to complex syntax in
R. LLMs were used for translation purposes, not conceptual reasoning.

7 R Code

library(readr)

library(stats)

library(dplyr)

library(tibble)

library(viridis)
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Figure 4: Manilkara huberi, a large tree native to South and Central America
used for its edible fruit, lumber, and most notably latex. Fev, Public domain,
via Wikimedia Commons.

library(plotly)

# Load in cleaned trait data from previous analysis

file_path <- "Cleaned_Trait_Data.csv"

traits_data <- read_csv(file_path)

# Removing extraneous value from the sm column

traits_data <- traits_data %>%

mutate(sm = as.numeric(sub(" .*", "", sm)))

# Transpose the data in loaded-in format

# This is done to ensure A is m x n, where:

# we have n samples (species in this case, where n = 2790)
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# and m measurements (functional traits in this case, where n = 6)

T <- as.data.frame(t(as.matrix(traits_data)))

view(T)

# Fixing a formatting issue, move species names to top row

colnames(T) <- T[1, ]

T <- T[-1, ]

view(T)

# Convert to numeric data

T_numeric <- as.matrix(T)

mode(T_numeric) <- "numeric"

# Row means computation for de-meaning

row_avg <- rowMeans(T_numeric, na.rm = TRUE)

print("\nRow Averages:")

print(row_avg)

# Subtract respective row means

# (these are averaged functional trait measurements across all species)

T_centered <- T_numeric - row_avg

# Convert to data frame

T_centered_df <- as.data.frame(T_centered)

view(T_centered_df)

# Assign de-meaned data back to T

T <- T_centered_df

view(T)

# A is an m x n matrix, so n is number of rows (number of species)

n <- ncol(T_centered)

print(n)

# Scale T by 1/sqrt(n - 1) to match SVD

T_scaled <- T_centered / sqrt(n - 1)

# Convert back to a data frame

T_scaled_df <- as.data.frame(T_scaled)

view(T_scaled_df)

# Assign scaled data to T before transposing

T <- T_scaled_df

view(T)

# Transpose T
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T_transpose <- as.data.frame(t(as.matrix(T)))

view(T_transpose)

# Convert T and T^T to numeric matrices for computation

T_numeric <- as.matrix(T)

mode(T_numeric) <- "numeric"

T_transpose_numeric <- as.matrix(T_transpose)

mode(T_transpose_numeric) <- "numeric"

# Ensure correct input orientation: species as rows, traits as columns

data_matrix <- as.data.frame(t(T_numeric))

# PCA using built in prcomp() function

pca_result <- prcomp(data_matrix, center = FALSE, scale. = TRUE)

# Examining SVD components from prcomp()

U <- pca_result$rotation

# To visualize singular values along diagonal

Sigma_values <- pca_result$sdev

Sigma <- diag(Sigma_values)

# Issue displaying with species names, dont print

Vt <- t(pca_result$x) # V^T (Right Singular Vectors - Principal Component Scores Transposed)

# Print individual SVD matrices

cat("\nU (Left Singular Vectors - Principal Component Directions):\n")

print(U)

cat("\n (Singular Value Matrix - Diagonal):\n")

print(Sigma)

# Extract 2D PCA scores (PC1 vs PC2)

pca_scores_2D <- as.data.frame(pca_result$x[, 1:2])

pca_scores_2D$species <- rownames(pca_scores_2D)

# 3D PCA scores for species

pca_scores <- as.data.frame(pca_result$x[, 1:3])

pca_scores$species <- rownames(pca_scores)

# 2D PCA Scatter Plot

p2 <- plot_ly(pca_scores_2D,

x = ~PC1,

y = ~PC2,

text = ~paste(species, "<br>PC1:", round(PC1, 2), "<br>PC2:", round(PC2, 2)),
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type = "scatter",

mode = "markers",

marker = list(size = 5, opacity = 0.8, color = ~PC1, colorscale = "RdBu"),

hoverinfo = "text",

showlegend = FALSE) %>%

layout(title = "2D PCA Scatter Plot for Plant Trait Data",

xaxis = list(title = "PC 1"),

yaxis = list(title = "PC 2"))

# This line actually renders the plot in the plot window

p2

# 3D PCA Scatter Plot

p3 <- plot_ly(pca_scores,

x = ~PC1,

y = ~PC2,

z = ~PC3,

text = ~paste(species,

"<br>PC1:", round(PC1, 2),

"<br>PC2:", round(PC2, 2),

"<br>PC3:", round(PC3, 2)),

type = "scatter3d",

mode = "markers",

marker = list(size = 5,

opacity = 0.8,

color = ~PC1,

colorscale = "RdBu"),

hoverinfo = "text",

showlegend = FALSE) %>%

layout(title = "3D PCA Scatter Plot for Plant Trait Data",

scene = list(

xaxis = list(title = "PC 1"),

yaxis = list(title = "PC 2"),

zaxis = list(title = "PC 3")

))

p3

# Singular values from sigma

Sigma_values <- diag(Sigma)

# Use Sigma_values to compute eigenvalues and explain variance from each PC

explained_variance <- (Sigma_values^2) / sum(Sigma_values^2)
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# Print above result

cat("\nVariance Explained by Each Principal Component:\n")

print(explained_variance)

# How much each PC contributes to overall variance as we add more up to all 6

cumulative_variance <- cumsum(explained_variance)

# Print above result

cat("\nCumulative Variance Explained:\n")

print(cumulative_variance)

# Scree plot to visualize cumulative_variance relationship

plot(cumulative_variance, type = "b",

main = "Cumulative Scree Plot for Plant Trait PCA",

xlab = "Principal Component",

ylab = "Cumulative Variance Explained",

col = "black", pch = 19, lty = 1)

# Threshold lines at 70%, 80%, and 90%

abline(h = 0.7, col = "orange", lty = 2) # 70% line

abline(h = 0.8, col = "red", lty = 2) # 80% line

abline(h = 0.9, col = "blue", lty = 2) # 90% line

# Legend

legend("bottomright", legend = c("90%", "80%", "70%"),

col = c("blue", "red", "orange"), lty = 2, cex = 0.8)

# Average Euclidean distance for each species in both 2D and 3D

compute_avg_distance_vectorized <- function(matrix) {

# Capture all 2790 species

n <- nrow(matrix)

# Pairwise differences for each coordinate

x_diff <- outer(matrix[,1], matrix[,1], "-") # x_i - x_j

y_diff <- outer(matrix[,2], matrix[,2], "-") # y_i - y_j

if (ncol(matrix) == 3) {

z_diff <- outer(matrix[,3], matrix[,3], "-") # z_i - z_j (for 3D)

# Store in a distance matrix, where the rows are pairwise distances for each species

dist_matrix <- sqrt(x_diff^2 + y_diff^2 + z_diff^2)

} else {

dist_matrix <- sqrt(x_diff^2 + y_diff^2)

}

diag(dist_matrix) <- NA # when i = j, distance from a coordinate to itself irrelevant
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avg_distances <- rowMeans(dist_matrix, na.rm = TRUE) # Compute average per row

return(avg_distances)

}

# Average distance for 2D PCA call w/matrix conversion

coords_2D <- as.matrix(pca_scores_2D[, c("PC1", "PC2")])

pca_scores_2D$avg_distance <- compute_avg_distance_vectorized(coords_2D)

# Higher avgerage distance means higher rank,

# as we are looking for the most functionally unique species

pca_scores_2D$rank <- rank(-pca_scores_2D$avg_distance)

# Same as above, but for 3D PCA

coords_3D <- as.matrix(pca_scores[, c("PC1", "PC2", "PC3")]) # Convert to matrix

pca_scores$avg_distance <- compute_avg_distance_vectorized(coords_3D)

pca_scores$rank <- rank(-pca_scores$avg_distance) # Higher avg dist → Higher rank

# Print above result

cat("\nTop 10 Species in 2D PCA by Avg Distance:\n")

print(head(pca_scores_2D[order(pca_scores_2D$rank), c("species", "avg_distance", "rank")], 10))

cat("\nTop 10 Species in 3D PCA by Avg Distance:\n")

print(head(pca_scores[order(pca_scores$rank), c("species", "avg_distance", "rank")], 10))

# Spearmans rank correlation between 2D and 3D PCA relative rankings

spearman_rho <- cor(pca_scores_2D$rank, pca_scores$rank, method = "spearman")

# Print above result

cat("\nSpearmans rho:", spearman_rho, "\n")
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wolf, Ehsan Dulloo, Luigi Guarino, David Hole, Chikelu Mba, Alvaro Toledo,
and Nigel Maxted. Modeling of crop wild relative species identifies areas
globally for in situ conservation. Communications biology, 2(1):136, 2019.

[5] Victor Cazalis, Luca Santini, Pablo M Lucas, Manuela González-Suárez,
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