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1 Introduction

Jacob’s Well is a spring which emerges in the bed of Cypress
Creek, fed by the Middle Trinity Aquifer, near Wimberley,
Texas [21]. Today, Jacob’s Well is a popular swimming hole
(when flows are high enough), and a significant cultural mon-
ument for the community of Wimberley and the surrounding
Hill County, also acting as a major economic driver via feed-
ing the downstream flow of Cypress Creek and how central
water is for tourism in the area [24] [17], furthermore, it sup-
ports an extensive cave system far beyond what meets the eye
[15]. The first people to know of Jacob’s Well were Indigenous
groups such as the Tonkawa, Jumano, and Commanche [10],
current archeological evidence is sparse due to the recurrent
flooding of the creek, but Jacob’s Well was almost certainly
an important locale for these groups [24]. In past, present,
and future, Jacob’s Well ”carries an aura of mysticism” [24]
which represents a place of immense importance for those in
the Texas Hill Country.

2 Hydrogeologic Background

Central Texas experiences long periods of drought, inter-
spersed with floods, especially, and is known as ” Flash Flood
Alley” for its extreme rain events. In the future, longer
droughts, interspersed with extreme rainfall events of greater
magnitude are projected [20]. The limestone geology of this
region supports large karstic aquifer systems such as the Ed-
wards and Trinity Aquifers. Unlike the Edwards, the Trinity
Aquifer has a very slow recharge rate, and has seen aquifer-
wide declines in water levels [7]. This means that the Trinity
Aquifer is far more vulnerable to predicted climatic shifts,
as it cannot quickly recharge to capacity like the Edwards
Aquifer in major flood events, so it must be managed care-
fully. It should be noted that declines in the Edwards-Trinity
Aquifer !, which presumably has similar recharge character-
istics to the Trinity Aquifer, has experienced the drying of
several large West Texas springs, after ”large irrigation with-
drawals” according to a 1994 study employing a finite-element
model [12]. Furthermore, this study found that the Trinity is
”hydraulically connected” to the Edwards, providing under-
ground recharge at a rate of 500 cfs/s [12].

3 Recent Developments and Water
Laws

In addition to climatic shifts, Central Texas is experiencing
massive strain from development along the I-35 corridor, re-
sulting in land clearing and increased demand of limited wa-
ter resources. In fact, Hays County (where Jacobs Well is
located), is the fastest growing county in Texas [9]. More
residents and developments reduce the ability for land to
recharge aquifers, and increases demand for residential wa-
ter. This leads us to 2022, where Aqua Texas, the ”primary
water provider for Hays County” [23] overpumped its legal
limit of 90 million gallons, for a total of 162.1 million gallons.
In 2023, Aqua Texas pumped 156.4 gallons of water [19]. The
only penalty for these actions are fines, which are disputed by
Aqua Texas—and a number of legal proceedings regarding this
case are ensuing [19]. As current water laws in Texas stand,
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website:

1The Edwards-Trinity Aquifer is distinct from the
and Trinity Aquifers, yet hydraulically connected.
ification, see the Texas Water Development Board’s
https://www.twdb.texas.gov/groundwater/aquifer /major.asp

specifically the Rule of Capture, there is nothing preventing
private landowners from taking as much water from a well as
that entity pleases, so long as there is no "malicious” intent
[18]. Essentially, the deepest well has the most sure access
to water, causing existing wells of longtime landowners to
run dry, and look to other sources for drinking water. This,
coupled with the cultural and economic significance of Ja-
cob’s Well to Wimberley and the surrounding Hill Country,
makes the springflow of Jacob’s Well an environmental justice
issue. In addition, the karstic caves of the Edwards and Trin-
ity Aquifers are home to many endemic, some endangered,
cave- and spring-dwelling species which are very sensitive to
changes in habitat, which are affected by water level declines
[6]. While downloadable continuous data is only available on-
line since 2005, records go back much further. Before the year
2000, Jacob’s Well had not run dry-but zero flow conditions
have been recorded in 6 periods since then [17].

4 Statistical Modeling

Subsurface groundwater flows are extremely complex, and our
understanding of recharge, subsurface flow dynamics, and dis-
charge are constantly evolving. The aforementioned 1994
finite-element modeling yielded conclusions regarding the
connectivity of the Trinity and Edwards Aquifers [12], which
is useful for groundwater management decisions. Physics-
based simulations have proven effective for groundwater mod-
eling, but cannot completely describe systems of this com-
plexity and magnitude. In many cases, relying on observed
statistical data, especially for management decisions and pre-
dictions, is an effective tool. In Sepulveda 2009, it was shown
that Artificial Neural Networks outperformed hydraulically-
based methods such as the Theis, Hantush-Jacob, and Darcy-
Weisbach equations when predicting spring flows in the Up-
per Floridan aquifer [16]. Not only have statistical meth-
ods proven effective in springflow prediction, but have even
been able to demonstrate and quantify the effects of agri-
cultural practices and groundwater pumping in the Mingin
Oasis in China [8]. In fact, using ANNs for groundwater
modeling represents a ”superior alternative to traditional nu-
merical modeling approaches,” especially in karstic aquifer
systems which requires ”less development” than numerical
simulations—though both methods are necessary for effective
management [5]. Creating a logistic regression classifier to
predict zero-flow days is a tangible idea for future work. How-
ever, similar to the pedagogy of CS 109, contextualizing the
system using first principles is important, so the scope of this
study will focus on the MLE of the Poisson and Exponential
Distributions across time-series data. 2

5 Datasets

To conduct our time series analyses of random variables, we
obtained a spring discharge dataset from USGS which con-
tained daily minimum, maximum, and mean spring discharge
values for Jacob’s Well from 2005-04-23 to 2024-11-26, hence-
forth referred to as time period. For these same dates, we
obtained daily rainfall data from NOAA from the WIMBER-
LEY 1 NW station (GHCND:USC00419815), which repre-
sented the closest rain gauge with data matching this times-

2Note to reader: Although I did not have the data resources to create
a fully functional ANN within the timeframe of the 109 challenge, I plan
on creating one over winter break/in future quarters. If you know of any
professors working on geospatial or hydrogeologic ML, please send me
an email at wkirk@stanford.edu.



pan. We stored this information in a dictionary with the keys
as dates, each having a value of a tuple holding the spring dis-
charge as its first entry, and rainfall as its second entry.

6 Methods and Results

6.1 PMF of Spring Discharge

The first step in data analysis was to create a PMF of daily
mean spring discharge from Jacob’s Well for our time pe-
riod (Figure 1). The maximum daily discharge for this time
period was 101 cfs, which occurred on 2015-05-28 after the
2015 Memorial Day Floods [2]. We discretized the data into
103 categories, incrementing by 1 cfs, including the minimum
value and excluding the maximum, [min, max), where days
with a mean value of zero being put in a separate category.
The colors in the graph correspond to flow indicators set by
Hays Trinity GCD Rule 15 [22], seen in Supplementary Table
1.
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Figure 1: PMF of daily mean spring discharge for Jacob’s
Well

6.2 Discharge to Rainfall Ratio

While aquifer water level is more commonly referenced in re-
lation to spring discharge, we use rainfall as a proxy. While
this is not the most direct measure, we know that rainfall
directly influences aquifer water level, which directly influ-
ences spring discharge. To formalize this, for each date,
we summed the daily rainfall over the previous 365 days
to obtain a cumulative value for each date. To check that
this relationship was relevant, we looked at the correlation
between R ~ Cumulative Rainfall Over the Prior Year and
D ~ Spring Discharge. This is the derivation used to cal-
culate correlation, where all R;’s and D;’s were looped over
using double summation,

B Cov(R, D)

~ /Cov(R, R) - Cov(D, D)

B E[RD] — E[D]E|R]
VE[R?| - E[R]? - E[D?] - E[D]?

= 0.447

p(R, D)

demonstrating a moderate positive correlation between R and
D. This makes sense based on known physical phenomena,
but we are not aiming to isolate this correlated fluctuation, so

there must be some attempt to normalize the spring discharge
measurements to the recent rainfall, hence why the ratio was
implemented. Further refinements are made in Section 6.3.
The original discharge to cumulative rainfall ratio can be seen
in Figure 6.

6.3 Log Transform and Percentiles

In order to best visualize the time-series data, we performed
a logarithmic transform and scaling procedure to the origi-
nal spring discharge to the cumulative rainfall ratio. We are
concerned with the relative relationship, meaning that loga-
rithmic transforms and scaling do not impact this aside from
easier visualization. We apply this formula to each date in

the time period,
1 D; - 100
oo [ 2L 7
g R,

yielding the result seen in Figure 2. Note, because log(0) is
undefined, we assigned all zero-flow days to have a value of
-1.5. The lowest non-zero log-transformed value was -1.367
from 2023-06-23. The reason -1.5 was used as opposed to
a more incremental value is due to the increasing steepness
of the log function, as well as the fact that ”zero-flow” days
represent a wide variety of subsurface conditions and water
levels. For instance, the aquifer could be completely empty, or
just barely below a detectable flow—these are two vastly differ-
ent situations, accounted for by the slight departure from the
next lowest value. Notice that within the dataset, we labeled
the 10th, 25th, 50th, 75th, and 90th percentile of points.
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Figure 2: Spring Discharge to Prior Yearly Rainfall Ratio
Across Time.

6.4 Poisson MLE Across Percentiles

To visualize temporal shifts in the frequencies of spring dis-
charges of a certain percentile due to anthropogenic influ-
ences, we employed the Poisson Distribution. We defined
Xihreshold t0 be the number of days in a 365 day (1 year)
time period, above a certain threshold, so0 X¢nreshola ~ Poi()).
Assume events occur independently. This was done for all 5
average thresholds or percentiles, (used interchangeably), de-
fined in Section 6.3. For each date with a) 365 days of prior
year rainfall data and b) 365 days of spring flow after, (2006-
04-26 to 2023-07-11), we estimated the MLE for A for the next
year. For instance, let ¢ = 2007-01-01, Xe represents the MLE
value for A for the time period until 2008-01-01, resulting in
rolling 1 year timeframes across the dataset. Following the
derivation obtained from [14], we can see that the MLE for
a Poisson of a particular day c is, where z. is the number of



days above a certain threshold 1 year from that day:

- T
< c
Ae = —.

n
i=1

Considering that our time period is one year, this simplifies to
allow us to count the number of days above a certain threshold
for one year to estimate ..

Ae = Te.

In addition to daily estimates for Xe, the average of each per-
centile is graphed in the same color, alongside daily rainfall
totals plotted in tan for context, in Figure 3.
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Figure 3: X for Log data Percentiles Over Time with Daily
Rainfall. Dashed line is Time Period Average.

These results demonstrate a significant reduction in spring
discharge over time across all percentiles. However, the most
pronounced declines come with the two trendlines for days
above the 10th and 25th percentiles. Assuming values plateau
near the current level, we will have seen decreases of around
325 days per year to 125 days per year, and around 250 days
per year to 75 days per year, respectively. By looking at re-
cent data with reference to the relative distribution of data,
we can see how recent human actions such as overpumping
have diminished springflows rapidly since 2022. Furthermore,
daily rainfall data is not extremely skewed towards the first
half of dates. One may ask, what is so convincing about this
most recent dip? Look at 2011 or 2013, with nearly equivalent
declines that eventually rebounded? The 10th and 25th per-
centile declines compared to their previous lows, which were
~ 250 and ~ 120 before 2021/2022, are magnitudes lower in
the last 10 years, demonstrating the severity of the spring
flow? reduction in addition to its duration.

6.5 Exponential MLE for Zero-flow and
High-flow

One of the key concerns regarding Jacobs Well is the increased
frequency of zero-flow days. While the article referenced in
the Background section mentions 6 occurrences of zero-flow
[17], you can see the frequency and duration zero-flow days in
Figure 4, with a singular thin, tan line representing one zero
flow day. We can see that over time, the duration of zero-
flow periods has increased, especially since mid-2022. For
those who are curious, all of the days have been plotted in
this style (Supplementary Figure 8) based on their classifica-
tion in Supplementary Table 1. The exponential distribution

3Spring flow and spring discharge are used interchangeably in this
paper, though spring discharge refers to the exact measurement
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Figure 4: Zero-Flow Days Across Available Data Timespan

is an excellent tool to visualize this phenomena, as the event
is now a day with zero-flow, and we are measuring the days
between events. We assume each event is independent. Simi-
lar to Section 6.4, we calculate the MLE, Xc, which requires a
correction [4] using the 1-year rolling window technique once
more. Within this one year time frame, n represents the num-
ber of instances of zero-flow days, and the number of days
between each instance represents an x;, where x 5\6, follow-
ing the derivation obtained from [4] citing [11][13], we can
estimate j\cu, the final unbiased estimator, by finding S\Cb the
biased estimator. We can find the biased estimator by taking
the reciprocal of the average days between our events:

)\cb =

ST

with n representing the number of gaps, and T representing
the average duration of a gap between zero-flow days over a
one year period:

Xcu = 5\0;, — Bias

=\ — E |:5\cu - S\Cb}
- 5\Cb B nj\ibl

The results of the MLE estimation across time can be seen
in Figure 5, using rolling windows of 1 year and 10 years. An
identical process was repeated, but the event is days with a
spring discharge above 6 cfs (no drought) in Figure 6.

In Figure 5, looking at how A changes over a one year pe-
riod does not reflect the longer durations of zero-flow days we
see in Figure 4, why is this? The reason for this is because
our time window for the exponential distribution is far too
small. Compare this to the 10 year window. The smaller
gaps in 2009, 2011, and 2013 (see Figure 4) still account for
a large share over a one year period, but their frequency in
comparison to events since 2022 is of lesser magnitude, which
is more accurately reflected over a long timescale. The emer-
gence of a clear trend for high flows is also evident in Figure 7,
identifying that groundwater pumping and land use change
have contributed not only to more frequent zero-flow days,
but less-frequent high flow days—a trend not glaring in the
Poisson data (Section 6.4).

7 Supplementary Figures/Notes

PMF Criteria and table obtained from Watershed Association
[22]. Note, we only used 1 day of data for the PMF, not 10
day averages.
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Figure 5: Comparison of MLEs for Zero Flow Days: (Top)
1-Year Rolling Period, (Bottom) 10-Year Rolling Period.

Figure 7: Comparison of MLEs for Above 6 cfs: (Top) 1-Year
Rolling Period, (Bottom) 10-Year Rolling Period.
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7.1 Use of Generative Al

I leveraged ChatGPT translate big ideas into large code
chunks and debug. Sometimes methods were tweaked based

on feedback on overlooked details.

ChatGPT was also used

for LaTex help. I asked ChatGPT to cite itself in BibTex for
its help in this project [3].
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