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Abstract

Machine learning approaches are increasingly being ap-
plied to lunar seismic data for accurate and fast classifi-
cation, especially in the context of efficient processing and
storage of seismic data on future lander missions. In this
paper, we create a 2D CNN classifier to classify moon-
quakes into one of four major types, and applied it to iden-
tify currently unclassified moonquakes which warrant re-
evaluation by experts for potential labeling. Two to five
layer models are tested on separate subsets of LSPE data
over 200 grade A moonquakes classified as deep, impact,
and shallow, and nearly 3,000 grade A, B, and C classified
moonquakes, achieving an average accuracy of over 90%
on the grade A subset and 80% over the entire dataset. We
also discuss and intially quantify the possibilities of a dis-
tinct and separate subclass of moonquakes.

1. Introduction
1.1. Problem

We want to be able to comprehensively classify Apollo
moonquake data to refine our understanding of the internal
structure of the moon, and determine if modern machine
learning techniques can help us in develop statistical mod-
els to represent classification, contribute to automatic clas-
sification on future lander missions, and filtering traces for
data prioritization [1]. Specifically we seek to determine
the utility of varied combinations of input data and the ef-
fectiveness of neural net architectures to classify seismo-
logical data. The original data is difficult to classify due
to high levels of noise [2], a common problem also seen in
seismic data from Mars whch there have been attempts to
resolve [3].

1.2. Prior Classification Efforts

Prior studies, such as Nakamura et al. 1982 [4]
have done initial classification of the detected moonquakes
throughout the Apollo missions. However, the majority
of these early classifications were done manually which is
both time consuming and not feasible at a large scale; and,
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more than half of the original moonquakes were unclassi-
fied at this time. Since then, computational analyses have
aided in classification using techniques such as cross corre-
lation [2] [5], and more recently spectrogram data has been
used to train supervised learning methods and convolutional
neural networks (CNNs) to detect seismic events [1].

1.3. Alternative Parameters to Spectrograms

Other methods have emerged including using thermal
data or lunar orbital parameters with time to locate deep
moonquake source locations [6], but there has been no com-
parison or combination of such methods yet. The accu-
racy of supervised learning classification for seismic data
still leaves much to be desired, reaching only around 70%
in multiple studies [6] [7], with certain models performing
much better [1] [7].

1.4. Proposed CNN Model

We introduce a classifier trained on a three grades of data
(A, B, and C), in an attempt to recognize wave characteris-
tics [ 1] [5] using a CNN, without overgeneralizing, with the
potential to add lunar orbital parameters and time data [8],
and perhaps thermal data to later models. With this, we
intend to build a model which classifies moonquakes into
one of three main types, being deep, shallow, or impact
moonquakes, discussed in more detail in section 2.3. We
additionally use this methodology to identify unclassified
moonquakes for potential classification by experts. Cur-
rently, the dimensionality of spectrogram inputs are an area
of conflicting research, with some papers finding success
using 1D spectrogram input data [7], while others 3D spec-
trogram input data [ 1], or other methods using entirely dif-
ferent inputs [8]. Our model inputs will include seismome-
ter data collected from the four station seismic network on
the moon known as the Apollo Lunar Seismic Experiments
Package (ALSEP) [4]. The model will be trained on pre-
viously classified moonquakes, including those catalogued
in Nakamura et al., 1982 [4], which will comprise the val-
idation set as well. Finally, we will test the model on pre-
viously unclassified moonquakes to determine its accuracy
and make any additional observations as necessary.



1.5. Evaluate the Solution

To evaluate our method and model, we compare our clas-
sification accuracy of both long period and short period lu-
nar seismometer data to that of previous studies, keeping in
mind the 70% threshold mentioned earlier. We also evalu-
ate the effectiveness of using various types of data including
waveform data, lunar orbital parameters, and thermal data
both in isolation and in combination. (Additional informa-
tion and conclusions will be provided once we are able to
produce real results). Ideally, we are able to classify cur-
rently unclassified moonquakes into one of the four major
types [4]. In addition, there exists the possibility of the
identification of subtypes within a known group of earth-
quakes [9]. We want to create a model which is able to clas-
sify earthquakes by picking up on details in the data that
have been overlooked by previous studies, while remaining
generalizable to future data, as is the goal of many neural
net architectures.

2. Related Work
2.1. Methods and Characterization of Moonquakes

The characterization of moonquakes into several subcat-
egories by seismicity and “types of natural seismic sources”
[4] has been thoroughly explored and well defined. Those
are most prominently, deep moonquakes, shallow moon-
quakes, thermal moonquakes, and meteoroid impacts [4].
However, there is not a universal, unchanging agreement
on the classification of known moonquakes, and additional
categories or subcategories may exist. In fact, the classifi-
cation of moonquakes is constantly changing due to many
reasons, including the evolution of methods (see Machine
Learning Approaches below) and access to more complete
and comprehensive data sets [2].

2.2. Machine Learning Approaches

With the relatively recent drastic improvements to Ma-
chine Learning with neural nets, many papers have uti-
lized machine learning to now classify or help classify
moonquakes in favor of earlier manual methods. It has
even become possible to very accurately catalogue plan-
etary seismicity even without local training data with the
usage of convolutional neural nets [1] [10]. Techniques
such as stacking enabled classification of previously un-
classified deep moonquakes, yet struggle to classify novel
events [5] [11]. However, neural networks can address lim-
itations of template matching without sacrificing accuracy
as evidenced by using a deep learning techniques and CNN
to distinguish between P-waves, S-waves, and noise [11].
Many architectures have been tried for CNNs for moon-
quake classification with both 1D [7] and 3D input seismo-
gram data [1], while other methods use entirely different
inputs [8]. According to Stott et al. 2023, the optimal neu-

ral network has the lowest validation loss and smallest gap
between validation and training loss” [3] which is what we
will aim to achieve.

2.3. Lunar Structure

One more category of interest that many papers cover
on the topic of moonquakes is the internal structure of the
moon - after all, one of the biggest reasons for studying and
classifying moonquakes is the insight they give on the lu-
nar structure [12] [13]. Our understanding of the moon’s
interior and systems are constantly changing. Initial anal-
ysis of moonquake data allowed for the recalculation of
P- and S- wave velocity profiles, and more precise defini-
tions of the upper and middle mantle. [4] [14]. Further-
more, a new seismic model of the moon has been proposed
several times [15], new patterns in structure have been re-
vealed through data analysis, such as the discovery of two
previously undescribed belts of moonquake epicenter activ-
ity [4], and we are currently unsure of the main driver be-
hind thermal moonquakes [9].

2.4. Other Applications

The study of moonquakes has many important and con-
sequential applications - for example, the same methods
of classification and characterization can potentially be ap-
plied to earthquakes. Currently, though not perfect, much
progress is being made on the automated detection of earth-
quakes [16]. Re-framing existing data is also improving
classification capabilities. For instance, thermal moon-
quakes have been classified into two different types [9], ma-
chine learning approaches have resulted in improved signal
to noise ratios by considering seasonal atmospheric condi-
tions [3], and using spectrograms as opposed to time-series
data accounts account for noise differences in moonquake
and earthquake data due to sensor sensitivity [1]. More-
over, with the machine learning methods mentioned earlier,
it has even become possible to automatically pick up local
earthquake seismic data [1] [10]. [9]

2.5. CNN Classification by Type

In summary, techniques to clean and consolidate data [9]
[3], has enabled many machine learning methods, specifi-
cally CNNs to emerge for moonquake classification [7] [1]
[8]. However, these models differ with input data and have
not classified all of the originally 7633 unclassified moon-
quakes [4] using new data cleaning techniques, especially in
under-analyzed areas of the moon where data exists. We can
classify moonquakes using Convolutional Neural Network
(CNN) we can classify moonquakes inton deep, shallow,
and impact, with the end goal of identifying previously un-
classified moonquakes from the Apollo missions. In sum-
mary, moonquake classification is still undecided for much



of the Apollo records, and CNNs are an emerging technique
for classification.

3. Methods
3.1. Datasets

Our training and validation sets comprised of publicly
available Apollo lunar seismometer data of classified
moonquakes from the PSE and LSPE from Apollo stations
12, 14, 15 and 16. The training and validation data
were labeled as deep moonquakes, shallow moonquakes,
artificial impacts, and unidentified. We used previously
despiked broadband data to train our model. We divided
this dataset into training (80%) and validation (20%), and
obtained previously unclassified suspected moonquakes
cataloged by Nakamura et al. 1982 [4] for our test set.
First, we only trained on Grade A data in order to assess
the results on high-quality data. Then moved onto a robust
training set comprised of Grade A, Grade B, and Grade
C events, which is more representative of experimental data.

Our training and validation sets consisted of over 3000
previously classified moonquakes from the LSPE, including
over 300 grade As, as depicted in Table 1. Note that for
certain testing such as hyperparameter sweeping, we use a
subset of this data for more efficient but equally accurate
results.

Moonquake Label Dataset
Grade | Deep Impact Shallow Unlabeled
A 66 223 15 -
B 885 179 1 -
C 1658 213 0 -
v [- - - | 1951

Table 1. Number of samples in our dataset given specific grades
(A, B, and C), classifications (Deep, Impact, Shallow), and unla-
beled data (U).

3.2. Input Spectrograms

Our multiclass classification model consisted of using a
standard 2D-CNN using a colored spectrogram converted
from Apollo lunar seismometer waveform data as inputs
( Figure 1). As a general notion, spectrogram traces that
appear more distinctive to the human eye will have more
distinctive features, and in theory be easier to classify,
as CNN architectures are “based upon visual process of
humans” [17], providing a useful analog. In order to create
spectrograms, we convert .mseed files and read in the
data using functions from the ObsPy library. To visualize
and plot the data, we used Matplotlib. We can adjust
the resolution and no overlap parameters to see which

combination produces visually crisp spectrograms. To do
s0, we changed two parameter outputs, with the first being
the ’nfft’, which refers to the number of data points in
the fast Fourier transform (FFT). The default value is 256
and is used in powers of 2. The other parameter is the
‘noverlap’ value which represents the number of points
shared between each block. The default value is 128 and
needs to be a fraction of the nfft value (i.e. cannot have
more overlapping pixels shared than pixels themselves). In
order to test which combination of parameters worked best,
we tested initially tested a range of nfft values centered
around the default (64, 128, 256, 512, 1024) and for each
tested three values for noverlap as multipliers of these
values (0.25, 0.5, 0.75) for one trace of a Grade A deep
moonquake. After this, we repeated this process using a
smaller set of nfft values (64, 128, 256), with the same
fractions on a Grade A shallow moonquake, Grade A
impact moonquake, and Grade C Deep moonquake, to see
how the waveform signatures responded across moonquake
type and grade.
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Figure 1. An example converted, colored spectrogram for a deep
moonquake
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3.3. Hyperparameter Sweep and Model Architec-
ture

In order to determine the most relevant parameters for
our CNN architecture, we will run test different combina-
tions of hyperparameters. Much of the information from
this section came from the Habib and Qureshi 2018 research
review [17], starting points for hyperparameter sweeping
are from the Civilini et al. 2021 study [|]. Some parameters,
listed below, we can test with the current starter architec-
ture, so as to reduce the number of models while assessing
feature effectiveness: Some parameters, listed below, we
can test with the current starter architecture, so as to reduce



the number of models while assessing feature effectiveness:
Some parameters, listed below, we can test with the current
starter architecture, so as to reduce the number of models
while assessing feature effectiveness:

* Optimization Function (3 total): The default opti-
mization function is ADAM, in addition we will test
the similar NADAM function, as well as SGD and
the SGDF [18], the latter of which is discussed in the
model architecture section.

* Stride (2 total): We will test stride lengths of 1 and 2.
With our task, using a stride of 1 may be beneficial to
pick up small differences between spectrograms.

* Learning Rate (5 total): We will test learning rates
of 0.0001, 0.001, 0.1, and 0.05 to see which value is
most effective.

After we determine the most effective of these preliminary
hyperparameters, we can set these for the final model. For
other hyperparameters, listed below, we will need to com-
pare more incrementally, alongside other hyperparameters.

¢ Number of Convolutional Layers (4 total): In terms
of the structuring of fully connected, convolution, and
dropout layers, we will begin by structuring similarly
to [1]. We will also model the number of layers after
this study, testing 2, 3, 4, and 5 layer nets, to determine
if neural nets with more layers are effective for this
task, altering the stride length as needed.

e Number of Epochs: (3 total) Previous work has es-
tablished 50 epochs to be sufficient for model learning.
We will test 20, 40, and 60 epochs to see if this holds
true.

¢ Batch Size: (3 total) We will test batch sizes of 8, 16,
and 32, as discussed in Civilini et al. 2021.

After we determine the optimal configuration between
these hyperparameters, we may adjust them further within
smaller ranges, (i.e. if 40 epochs is ideal, we try 50 and
see if this is better), to further enhance model learning.
For instance, we will select 3 values between the two best
performing learning models from the preliminary testing.
Other parameters, such as the activation layer or specific
pooling adjustments, can also be made at this stage. Fur-
thermore, To reduce overfitting and optimize hyperparame-
ters for the validation set, we used L2 regularization, which
performed significantly bet- ter than early stopping. Addi-
tionally, we found that using the standard ReLU as our acti-
vation function and Mean Squared Error (MSE) as our loss
function produced the best results. The preliminary test-
ing parameters are changed one at a time, holding all others
constant, meaning that we will need torun 3 + 2+ 5 = 10

total trainings for the preliminary parameters. Then, we
will need to run 4z3x3 = 36 trainings for the main, iter-
ative testing. Then the final round will be done on a case by
case basis, and may result in 10-15 more training runs. We
record the model accuracy and loss for each to determine
which model is learning most effectively.

3.4. Classification of Unlabeled Data + Future Anal-
yses

Once we determined a final architecture, we treated the
unlabeled moonquakes as test data. Because there is high
uncertainty in this classification due to the lack of estab-
lished labels, we assign a confidence score to each moon-
quake based on Model 1 weights. We plan to send moon-
quakes with a confidence score of 0.99 or higher to expert
geophysicists for official labeling.

4. Results
4.1. Input Spectrograms

To convert seismogram data to images, we generated
spectrograms of one Grade A trace using 5 different ’nfft’
values, 2 magnitudes on either side of the default (64, 128,
256, 512, 1024). For each of these 5 values, we set its
’noverlap’ variable to be a fraction, namely (0.25, 0.5, 0.75)
of the original 'nfft’ value. The generated spectrograms
can be seen in Figure 2. Furthermore, the 512 and 1024
NFFT tested on the Grade A data can be seen in Figure
14 under Section 7, Supplemental Figures. From these
images, we determined that an "nfft’ value of 256 combined
with a ’noverlap’ value of 128 yielded the crispest spec-
trogram (256,128), where noise was minimized and detail
was maximized. The (128,64) spectrogram also proved
effective, evidenced by the tighter banding which retained
high clarity.

After analyzing the Grade A deep spectrograms, we
performed a similar process with 3 other moonquake traces,
being Grade A shallow, Grade A impact-to assess how
spectrogram generation varied across moonquake type—-
and Grade C deep, to see how waveform signatures varied
across seismogram quality. The results of these generated
spectrograms can be seen in Figure 2. One notable result
is the clarity of the Grade C deep moonquake, meaning that
parameter tuning for spectrogram translation may help to
elucidate previously hidden patterns. Overall, the (128, 64)
spectrogram produced the crispest result across the three
seismograms, with (64, 32) also yielding an especially
detailed result for the Grade A shallow. It seems as though
(256, 128) results in color bleeding for events without
as “powerful” as a marking, (i.e. shallow moonquakes),
meaning that the (128, 64) spectrogram is the optimal
choice to balance detail and crispness when formatting this



dataset across moonquake types and data qualities.
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Figure 2. Shallow Grade A, Impact Grade A, and Deep Grade C
Spectrograms

Apart from visual deduction, we further tested our model
on a subset of grade A data using either (128, 64) or
(256, 128) as part of our spectrogram generation functions.
Through running the model with the already optimized hy-
perparameters, we concluded that the inputs consisting of
(128, 64) spectrograms achieved a higher accuracy of over
5% higher than the same model with (256, 128) spectro-
grams as inputs.

4.2. Hyperparameter Sweep Phase 1:

To evaluate the performance of our moonquake clas-
sification model, our primary evaluation metric was
classification accuracy and loss of the validation set. We
determined our final model through completing a 2-phase
hyperparameter sweep and selecting optimized parameters
for the model through this process. Though, for the final
paper we will evaluate the test set.

First, we compared the two main optimizers we are
considering using for the final model, being SGD and
Adam, and trained our model using both. We did not use
the SGDF optimizer [ 18], as there are specific libraries we
need to install beforehand. Overall, the Adam optimizer
outperformed SGD significantly, reaching an accuracy of
70 percent as opposed to 15 percent for SGD, as seen in the
Accuracy/Loss Results (Table 2). We will likely use Adam
unless SGDF is extremely effective.

Next, using the Adam optimizer, we trained the model
using a stride of 1 versus a stride of 2. We found that
using a stride of 1 led to greater accuracy (70 percent vs
52 percent). The full accuracy and loss results can be seen
in Table 2. It is worth noting that stride 1 is 5 times as
computationally expensive on a per-step basis compared to
stride 2, which may be impactful on our lagrer full dataset.
If this is not problem, we will plan on using a stride size of

Lastly, we tested the learning rate on the Adam opti-
mizer. Originally, we had planned to test learning rates
of (0.01, 0.05, 0.1, 0.2, 0.5), however, 0.01, 0.05, and 0.1
produced similar results of around 15 percent accuracy, so
we tested learning rates of 0.001 and 0.0001, given that
our initial estimates were too high. These produced an
accuracy of 60 percent and 52 percent respectively and loss
of 0.82 and 1.05 respectively, indicating that a learning rate
near 0.001 would be most effective.

Overall, hyperparameter sweep phase 1 indicated that
using the Adam optimizer, with a stride of 1, and a learn-
ing rate of 0.001 (or close to this), will be the most effec-
tive combination for the next phase of our hyperparameter
sweep.

Hyperparameter Sweep Phase 1
Parameter \ Accuracy | Loss
Stride Length
Length 1 0.6957 0.8821
Length 2 0.5217 0.9319
Learning Rate
0.0001 0.5217 1.0528
0.001 0.6087 0.8187
0.01 0.1522 1.0961
0.05 0.1522 1.0918
Optimizer
ADAM 0.7174 0.7807
Stochastic Gradient Descent 0.1522 1.0998

Table 2. Phase 1 Performance Metrics for Grade A Data. Parame-
ters are organized by categories for clarity.

4.3. Hyperparameter Sweep Phase 2A:

After the completion of hyperparameter sweep phase
1, we tuned the number of layers, number of epochs, and
batch size more iteratively using the optimized parameters
from phase 1.

First, we varied the number of layers on the model,
pairing 2- and 3- layer models with both a stride of 1 and 2,
and pairing the 4- and 5- layer models only with a stride of
1 (stride of 2 was incompatible), similar to the layer setup
in Civilini et al. 2021. We found that using 2 layers with
a stride of 1 to be most effective, achieving an accuracy of
86 percent, similarly, 2 layers with stride 2 also performed
well, (84 percent) with a steep drop-off in performance
with the addition of more layers. The accuracy and loss can
be seen in Table 3.



After this, we varied the number of epochs to be 20, 40,
and 60, and we ran these on a general model consisting of
3 layers, similar to the baseline in hyperparameter sweep
phase 1. The accuracy and loss results can be seen in Ta-
ble 3. Overall, the model trained with 60 epochs produced
the best results, with an accuracy of over 80 percent, as
expected. Surprisingly, the model trained with 40 epochs
yielded the lowest loss, (0.59), solidifying the notion that
50 layers may be an effective point to train at while mini-
mizing loss [1].

Lastly, we varied the batch size to be 8, 16, and 32, simi-
larly to Civilini et al. 2021, and found that the model trained
with a batch size of 8 yielding the highest accuracy and low-
est loss (Table 3). This is not surprising, as a smaller batch
size allows for more detail to be considered by the model,
yet is more computationally expensive.

Hyperparameter Sweep Phase 2

Parameter | Accuracy | Loss

Number of Convolutional Layers - Stride Combination

2 Layers - Length 1 0.8696 0.5196
2 Layers - Length 2 0.8478 0.6781
3 Layers - Length 1 0.5435 1.3312
3 Layers - Length 2 0.7391 0.7759
4 Layers - Length 1 0.7609 0.6537
5 Layers - Length 1 0.7174 0.6144
Number of Epochs

20 0.5357 0.8855
40 0.7679 0.5926
60 0.8836 0.8422
Batch Size

8 0.7321 0.5511
16 0.6724 0.8812
32 0.6167 1.1132

Table 3. Phase 2 Performance Metrics for Grade A Data. Parame-
ters are organized by categories for clarity.

4.4. Hyperparameter Sweep Phase 2B:

After determining the optimizer, number of epochs, and
batch size, we iteratively tested combinations of the number
of convolutional layers and learning rates for the ADAM
optimizer with all grades of data. We kept the same number
of variations for the number of convolutional layers (2, 3,
4, and 5), but changed the variations for learning rate to be
(0.0001, 0.005, and 0.001) based on the results of hyperpa-
rameter sweep phase 1. We also trained with a stride of 1
and 2 with 2 and 3 convolutional layers, with only a stride
of 1 for 4 and 5 layers. Thus, the iterative hyperparameter
sweep resulted in 18 trials to determine the final model. The
results can be seen in Table 4.

Hyperparameter Sweep Phase 2
Parameter \ Accuracy | Loss
Model Configuration
2 Layers - Length 1 - 0.0001 0.8871 0.3497
2 Layers - Length 2 - 0.0001 0.8387 0.3085
2 Layers - Length 1 - 0.005 0.7097 0.7618
2 Layers - Length 2 - 0.005 0.7097 0.7589
2 Layers - Length 1 - 0.001 0.9032 0.5220
2 Layers - Length 2 - 0.001 0.8871 0.3863
3 Layers - Length 1 - 0.0001 0.9032 0.3017
3 Layers - Length 2 - 0.0001 0.7258 0.9664
3 Layers - Length 1 - 0.005 0.7097 0.7613
3 Layers - Length 2 - 0.005 0.7097 0.7587
3 Layers - Length 1 - 0.001 0.9032 0.2907
3 Layers - Length 2 - 0.001 0.6935 2.2511
4 Layers - Length 1 - 0.0001 0.8871 0.3243
4 Layers - Length 1 - 0.005 0.7097 0.7643
4 Layers - Length 1 - 0.001 0.9194 0.2843
5 Layers - Length 1 - 0.0001 0.7903 0.8606
5 Layers - Length 1 - 0.005 0.7097 0.7577
5 Layers - Length 1 - 0.001 0.7097 0.7587

Table 4. Phase 2 Performance Metrics for Different Hyperparam-
eters.

4.5. Final Model:

The two-phase hyperparameter sweep allowed our us to
determine optimal parameters to train our model with. In
the hyperparameter sweep, results were relative, as base
models were used to keep computational expense low, and
allow us to directly compare one set of parameters at a time.
The model combines each parameter that produced the best
result, meaning that the architecture consists of 2 layers
with a stride of 1, 60 epochs, a batch size of 8, using the
Adam optimizer set to a learning rate of 0.001 achieved the
best result on Grade A Data only, henceforth referred to as
model 1 ', (Figure 3) and the 4 layer model with a stride
of 1, 60 epochs, a batch size of 8, using the Adam opti-
mizer set to a learning rate of 0.001 achieved slightly higher
accuracy and extremely low loss, henceforth referred to as
model 2 (Figure 4). Both models were trained on Grade
A data only, as currently, spectrogram translation was not
able to elucidate patterns within lower quality (Grade B
and C) moonquake seismograms, and training results were
not successful when grade B and grade C data were in-
cluded. Both models reached 90% accuracy, outperform-
ing previous models tested alongside them in the hyperpa-
rameter sweep, and demonstrating the effectiveness of this

IThis model’s accuracy and loss results do not exactly correspond to its
entry in Table 2, as we held non-optimized parameters constant for testing
within the same parameter (e.g. using 20 epochs across all layer-stride
combinations), before running a final optimization



optimization method.

One encouraging result from the final model is the in-
creased accuracy on deep moonquakes, accurately classify-
ing all 12 in the dataset. Previously, our model struggled on
deep moonquakes in particular. Shallow moonquakes are
still not being classified well (2/4), but this dataset is very
small compared to deep and impact, which may explain the
result.

Model accuracy Model loss

Model accurac y Model loss

Figure 4. Model 2 Accuracy and Loss Results

Over all Grade-A PSE events in our training and vali-
dation sets, we were able to achieve over 90% validation
accuracy and minimal loss. We compared our results and
classification accuracy with prior studies using moonquake
data to identify true moonquakes versus noise, true earth-
quakes versus noise [10], [1], source regions of deep moon-
quakes [8] [7], and lunar rockfalls [19]. Though classify-
ing different processes of similar phenomena, these studies
can serve as a threshold for the desired accuracy rates of
classifications on lunar data. Our model achieved an over-
all accuracy of over 80%, outperforming previous studies
(Majstorovic et al., 2024) [8]) by up to 5%. Our classifi-
cation accuracy of deep moonquakes was particularly high,
likely due to noise and fewer samples of shallow and impact
moonquakes.

4.6. Final Model on Unclassified Data:

After training and optimizing our 2D CNN, we deploy
our model to the classification of currently unclassified
moonquakes. Currently unclassified moonquake record-
ings, also from the PSE and LSPE, were preprocessed
following the same pipeline used for the training data,
where each raw seismic signal was converted to a spec-
trogram. To do so, we employed Model 1, opting for
this model despite slightly lower accuracy, from model 2,

deep

impact

True label

shallow

deep impact
Predicted label

Figure 5. Final Optimized Model Confusion Matrix for Grade A
Data

due to avoiding over-fitting. The entire process remained
similar, but with the exception that only the forward pass
of the process occurs, and the backward pass is skipped
entirely. The result is a classification assigned the currently
unclassified event (Figure 9).
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Figure 6. Confidence distribution over all predicted shallow moon-
quakes.
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quakes.
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5. Discussion

This work and the evaluation of the best methods to de-
tect and classify moonquakes has many important implica-
tions, including that funding for future seismic data may
become more feasible due to the decreased need of send-

ing back all collected data. Moreover, this further anal-
ysis of moonquakes provides better insight on the lunar
structure and seismology of the moon. The machine learn-
ing methodology used in this paper may also be applied
to earthquakes, potentially providing valuable assessments
and early and automatic detection of earthquakes [16]. Per-
haps most importantly, by improving CNN detection and
classification of moonquakes, we could potentially improve
accuracy and generalizability for real-time lunar seismic
data. Additionally, we intend for this work to contribute
to understanding how well classifiers can understand noise
for future lander missions, such as on Mars, where dirunal
and seaonal” changes afftect data quality [3]. For future
missions, automatic detection accuracy is essential for data
storage, which is a scarce resource on lander missions and
an area of focus for planned endeavors [ | ], a motivating idea
central to the Civilini et al. 2021 paper. Furthermore, our
methods may be able to label currently unclassified earth-
quakes into a defined category, which we aim to verify with
an expert in the field, so unclassified moonquakes could be
officially verified and labeled.

One major threat is including too many layers which
overfit the data, especially when we are working with sub-
sets of high-quality (Grade A) versus low-quality (Grade
C) data. In order to combat this, we will simplify our model
architecture and use a training set of varied quality. An-
other more fundamental threat to this research is that there
is no ground truth for moonquake data, as the classifica-
tion of moonquakes is ultimately subjective and determined
by the hand-labeling of experts, and could fundamentally
change as more data becomes available. For examples of
this, see the Lunar section. Regardless, optimizing emerg-
ing machine learning techniques for lunar data represents
a valuable area of research, that can be applied to current
assumptions even if those assumptions change.

The model was successfully able to classify unclassified
events at a high confidence rate, with over 1300 out of the
1473 in the training set being classified at over 0.9 confi-
dence, as seen in Figure 10.

Additionally, all 3 moonquake types (shallow, deep, and
impact) were classified with similar confidence levels, as
exhibited by the confidence distributions separated by class
(Figures 6, 7, and 15).

The distribution by type of the predictions varies signif-
icantly from the distribution found in our training data - as
seen from Figures 11, 12, and 13, the predictions consist of
a large majority of impact moonquakes, while the training
set consists of more deep moonquakes. This discrepancy
can be explained by several possible factors: first, the cat-
alogue of currently unclassified moonquakes may simply
contain a disproportionate amount of impact moonquakes,
as deep moonquakes having been the most studied category
and also with much more distinct and consistent features
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Figure 10. Confidence distribution over all unclassified predic-
tions.

than impacts may have been classified to a higher degree
and rate than impacts. Moreover, looking at the distribu-
tion by type when restricted to grade A data only (Figure
14), the distribution appears far more similar, with an even
larger majority of impacts, indicating that most confident
classifications done prior contain more impacts, despite the
overall distribution containing more deep moonquakes. It
may therefore be possible that some of the less confidently
classified deep moonquakes are misclassified, leading to a
real distribution that leans towards our predictions.

Because we have no holistic data for our test set, we look
to verify our classification results with expert seismologists.

6. Conclusion

In this paper, we created a CNN classifier to label moon-
quakes into deep moonquakes, shallow moonquakes, or im-
pact moonquakes. By adjusting the way we generate spec-
trograms from seismogram data, and performing a two-
phase hyperparameter sweep, we created a model with over
90 percent accuracy on the Grade-A PSE events from the
Apollo missions, and can be applied to unclassified data
for potential classification and expert labeling. We be-
lieve this model is accurate and generalizable, and can help
to assist experts in identifying currently unlabeled moon-
quakes, which has the potential to yield a more refined un-
derstanding of the lunar structure. Similarly to conclusions
in Civilini et al. 2021, we believe that this model may help
to develop methods to for future lander missions, or other
applications where classification into waveform type is im-
portant for data prioritization and pattern recognition.

7. Supplemental Figures
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