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1 Introduction

The Northern Blackland Prairie is a Level IV ecoregion classified by the US EPA,
henceforth referred to as Region 32a, consistent with EPA terminology [1], rep-
resenting the southern extreme of the Great Plains tallgrass prairie. Currently,
only 4% of the original tallgrass prairie ecosystem spanning the Great Plains
remains intact [2], with roughly 0.0004% of the Northern Blackland Prairie re-
maining, in other words–only 5000 of the original 12 million acres remain [3].

Figure 1: Blackland Prairie Remnant within Clymer Meadow
Preserve, Hunt County, Texas. Wilafa, CC BY-SA 4.0
<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Com-
mons

Aside from the many inherent reasons to protect these remaining remnants,
preserving extant remnants of a once-larger prairie as blueprints for future
restoration acts as a driving motivator. I propose using a pixel-based super-
vised learning technique to classify prairie remnants using Google Earth Engine
(GEE). To do so, I evaluated four built-in machine algorithms (SVM, CART,
Random Forest, and Naive Bayes) in Google Earth Engine (GEE) to determine
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which is the most effective in supervised pixel-based classification of prairie
remnants in the Northern Blackland Prairie of Texas, an endangered eco-region
where less than 0.0004% of the original land area remains [3]. Based on previous
literature, I predicted the following relative ranking of each algorithm,

1. SVM - Proven effectiveness in classifying high-dimensional data [4], and
on crop-classification [5].

2. Naive Bayes - Given that we are using protected areas as a proxy for
prairie remnants, being able to achieve high accuracy despite noise will
prove effective.

3. Random Forest - Established success on a diverse array of data, though
may struggle with the noise in this application compared to Naive Bayes
and SVM.

4. CART - Similar concerns as Random Forest, along with misclassification
tendencies [6].

For a more complete background, please see Final Project Proposal.

2 Methods + Data

To define the training area, I used 3 publicly available datasets, (A) USGS
Land Use Land Cover (LULC) Data for the Continental United States for 2023
(Raster), (B) EPA Level IV Ecoregion Boundaries (Vector), (C) USGS Pro-
tected Lands of the U.S. dataset, (PAD-US) 4.0 (Vector). The pre-processed
state of the data can be seen in Figure 2.

• (A) USGS Land Use Land Cover (LULC) Data for the Continental United
States for 2023 (Raster)

• (B) EPA Level IV Ecoregion Boundaries (Vector)

• (C) USGS Protected Lands of the U.S. dataset (Vector)

I created two raster layers with 30 x 30 pixel resolution to define two training
data classes, being Remnant and Non-Remnant prairie. To simplify the
computation, I first filtered (A) to include only grassland 1 pixels, or Class
Label 71 [7]. Formally, we defined each as:

• Remnant: (A) Class Label 71 + (B) Region 32a + (C) Inside of Pro-
tected Areas

• Non-Remnant: (A) Class Label 71 + (B) Region 32a + (C) Outside
of Protected Areas

1Grassland/Herbaceous is defined as: ”Grassland/Herbaceous- areas dominated by gra-
manoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas
are not subject to intensive management such as tilling, but can be utilized for grazing.” [7]
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Figure 2: Layers (A), (B), and (C) before filtering methods.

Each class was created in QGIS using tools such as ”Clip Raster By Map Layer”
then exported as a .tif file to GEE so that pixels could be sampled. A high res-
olution delineation of the two classes can be seen in Figure 9 (Page 13).

It is worth noting that I opted to train the models within GEE, as opposed
to exporting data to an external training environment using TensorFlow or Py-
Torch [8]. This is because I wanted to determine how each model behaves with a
low amount of training data in GEE, as many users, especially those without the
knowledge of external ML workflows, will be working within GEE. This, along
with the fact that the focus of EARTHSYS 142 is getting experience working
with GEE, provided reason to explore the limits of computation and machine
learning within this framework. Inside the GEE environment, I sampled 500
remnant pixels and 500 non-remnant. For each pixel, the input training data
consisted of Landsat 9 Spectral Bands 1-7, where per-pixel information can be

3



thought of as a 7-vector input to the algorithm:

Band information for pixel i =



Band 1
Band 2
Band 3
Band 4
Band 5
Band 6
Band 7


This selection was made because is encompasses data which is used to calcu-
late known vegetation indices such as NDVI and EVI, removing the need for
direct calculation. Furthermore, high resolution spectral data has been shown
to be effective for similar classification tasks [9]. Once the training data set
was created, the models were trained and then evaluated on a set of 500 pixels
from each class, for a total of 1000, where all of the training pixels were re-
moved as choices for the test pixels. Because the total number of pixels for the
Non-Remnant class was on the magnitude of millions, and on the magnitude of
hundred thousands for the Remnant class. The area for each class, along with
a zoomed-in view for clarity, can be seen in Figure 9 (Page 13). Because of this,
I down-sampled the data in GEE to ensure random spatial distribution across
region 32a. I used built in GEE algorithms for each of the four, keeping all
settings default, with the exception of Random Forest, which I set to have 100
trees.

3 Results

Using the test data, a confusion matrix was generated for each algorithm, as
seen in Figures 3-6.
From these, we computed Overall Accuracy (OA), Cohens Kappa (κ) [10], and
F1 Score [11], to provide more context beyond initial classification. These met-
rics can be seen in Figure 7.

Thus, based on OA, the final relative ranking is:

1. Random Forest

2. SVM

3. Naive Bayes

4. CART

Overall, Random Forest had the highest OA, followed closely by SVM, though
SVM achieved a slightly higher F1 score, balancing recall and precision more
effectively [11]. All algorithms achieved an OA of over 60%, matching my initial
hypothesis.
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Figure 3: Confusion Matrix for Random Forest

One key motivation for this classification task was to identify areas with
potential prairie remnants based on known locations. To do so, I looked at the
results across each of the four algorithms, and selected points with True Label
of Non-Remnant and Predicted Label of Remnant, as these represent the areas
currently not known as prairie remnants, which may be unrealized remnants
of ecotones unique to Region 32a. Since each algorithm evaluated the same
pixels, I implemented this logic to see which pixels were classified in this way
by multiple algorithms, which was done using Python:

This is due to the idea that if a pixel’s predicted label is consistently remnant
and its true label is non-remnant, there is a higher likelihood that it contains
high-quality ecosystem. Each pixel is represented by a point (not to scale) to
visualize the spatial extent of these potentially unrecognized remnant prairies,
as seen in Figure 8 (Page 12):

4 Discussion

The results align with current conclusions in the literature. The original predic-
tion relative ranking underestimated the accuracy of Random Forest compared
to other algorithms. RF is used for a myriad of tasks, and performs well with
high-dimensional data [12]. Furthermore, the notion that RF is more accurate
than SVM in classification tasks, but not as robust [13] is supported by RF
achieving a higher OA and κ than SVM, while SVM achieved a higher F1 score
(balance of precision and recall). SVM performing well aligned with its known
performance on similar tasks [5] [14]. Naive Bayes achieved a lower overall ac-
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Figure 4: Confusion Matrix for SVM

curacy than SVM or Random Forest, perhaps because input data was limited
to only 7 spectral bands, so the noise was not a major factor in this dataset
[15]. GEE serves as an accessible tool for geospatial analysis [16]. Most large
data projects take place outside the GEE environment, but it is important to
understand how known algorithms perform with limited training data and com-
puting power, as many users will rely on these algorithms for similar tasks. The
nearest neighbor paper for this work [17], used 10000 training pixels for their
model, and though they used different methods to measure accuracy, achieved
accuracies of 58 − 66%, compared to our model, which used only 1000 train-
ing pixels, and achieved classification accuracies of 61 − 69%. Thus, with only
one-tenth of the training data, I achieved similar OA with built in algorithms
in GEE set to their respective defaults, which is a notable result. Furthermore,
the results met my initial hypothesis that all 4 algorithms would achieve greater
than 60% OA rate, consistent with current literature [18]. As for the potential
unidentified remnants, connecting local experts, regional and local governments,
and state agencies with the results represents a natural next step. This way,
additional surveys and measures to potentially conserve the land could be im-
plemented in the case it were to be developed. Also, pixels currently on public
land, or land where the landowner is willing to establish a conservation easement
are targets for immediate conservation action. Looking forward, combining ap-
proaches such as using ensemble algorithms [19], represents a future direction
of work. With regard to applications, working with tools such as PyTorch or
TensorFlow, with much larger datasets, could allow for more accurate classifica-
tion, alongside measures such as parameter tuning. Furthermore, once refined,
these methods could be generalized to adapt to input data from any ecoregion
or ecotone, depending on the spectral data characteristics and signatures, as a
way to locate unknown habitat fragments or remnants. I am considering looking
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Figure 5: Confusion Matrix for Naive Bayes

into a generalized model as part of a senior honors thesis. Potential limitations
to this study include the lack of a ”ground-truth” for comparison, as we used
protected areas as a proxy for prairie remnants.

5 Conclusion

I determined that Random Forest and SVM are the most effective built-in GEE
algorithms of the four tested for pixel-based supervised learning methods. All
models demonstrated over 60% OA on a relatively small training dataset (1000
pixels), and the results were used to identify potential remnant prairies cur-
rently classed as non-remnant prairies. Future work includes expanding to larger
datasets, ensemble learning implementations, and generalizing this workflow to
other ecoregions.

6 Data Sources

(A)U.S. Geological Survey, 2023, Annual National Land Cover Database (NLCD)
Collection 1 Land Cover Conterminous United States - 2023(published 20241016),
accessed at March 7, 2025 at https://www.mrlc.gov/data?f%5B0%5D=project_
tax_term_term_parents_tax_term_name%3AAnnual%20NLCD.

(B) U.S. EPA, 2013, US Level IV Ecoregions shapefile without state boundaries
(65 mb) - 2013 (published 20130416), accessed at March 7, 2025 at https://
www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
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Figure 6: Confusion Matrix for CART

SVM Random Forest CART Näıve Bayes

OA 0.683 0.685 0.611 0.657

Kappa 0.366 0.370 0.222 0.314

F1 0.701 0.691 0.607 0.663

Figure 7: Performance metrics for different classification models.

(C) U.S. Geological Survey (USGS) Gap Analysis Project (GAP), 2024, Pro-
tected Areas Database of the United States (PAD-US) 4.0: U.S. Geological
Survey data release, https://doi.org/10.5066/P96WBCHS
(D) Earth Resources Observation and Science (EROS) Center. (2020). Landsat
8-9 Operational Land Imager / Thermal Infrared Sensor Level-2, Collection 2
[dataset]. U.S. Geological Survey. https://doi.org/10.5066/P9OGBGM6

References

[1] United States Environmental Protection Agency (EPA). Level iii and iv
ecoregions of the continental united states, 2025. Accessed: 2025-01-28.

[2] National Park Service. Tallgrass prairie national preserve, 2025. Accessed:
2025-01-27.

8

https://doi.org/10.5066/P96WBCHS
https://doi.org/10.5066/P9OGBGM6


Algorithm 1 Counting Misclassified Pixels
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ReturnM Final misclassified pixel dataset
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7 Bibliography Notes, Initial Source Code, Use
of LLMs

The initial framework for the GEE Scripts for the model training and evaluation
was obtained from this guide (https://developers.google.com/earth-engine/
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guides/machine-learning). We used LLMs as a translation tool to handle
some complex syntax in Google Earth Engine, which was specified as ok via
announcements on the first day of class. LLMs were used only for transla-
tion/syntax purposes, not for conceptual reasoning/ideation.

8 Supplemental Materials

GEE Scripts: https://code.earthengine.google.com/dd5379a22cadb9c5e6e72bddfd718af5?
accept_repo=users%2Fstacemaples%2FSGC-EE101

https://code.earthengine.google.com/d9ae33f7b3741b028e49445b19977289?

accept_repo=users%2Fstacemaples%2FSGC-EE101

Presentation Slides from 3/11: https://docs.google.com/presentation/
d/1MbwwnmqcnWXpMFMw-5vWPlSGlzHVyiBLrReUlTq4_Fg/edit?usp=sharing
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Figure 8: Spatial Distribution of Potential Unidentified Remnants in Region
32a
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Figure 9: Remnant Areas in green and Non-Remnant Areas in dark tan.
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